Publications
.
2012.
A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.. Environ Microbiol. 13(1):13-23.
.
2011. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.. Bioelectrochemistry. 80(2):142-50.
.
2011. Constraint-based modeling analysis of the metabolism of two Pelobacter species.. BMC Syst Biol. 4:174.
.
2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.. Science. 330(6009):1413-5.
.
2010. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes.. BMC Genomics. 11:40.
.
2010. Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens.. Appl Environ Microbiol. 76(12):3999-4007.
.
2010. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.. PLoS One. 4(5):e5628.
.
2009. Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.. Funct Integr Genomics. 9(1):15-25.
.
2009. Genome-scale constraint-based modeling of Geobacter metallireducens.. BMC Syst Biol. 3:15.
.
2009. Extracellular electron transfer: wires, capacitors, iron lungs, and more.. Geobiology. 6(3):225-31.
.
2008. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens.. Environ Microbiol. 10(2):497-505.
.
2008. Geobacter sulfurreducens strain engineered for increased rates of respiration.. Metab Eng. 10(5):267-75.
.
2008. Growth with high planktonic biomass in Shewanella oneidensis fuel cells.. FEMS Microbiol Lett. 278(1):29-35.
.
2008. Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.. Appl Environ Microbiol. 74(18):5850-3.
.
2008. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.. Appl Environ Microbiol. 73(16):5347-53.
.
2007. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation.. J Bacteriol. 189(5):2125-7.
.
2007. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.. Appl Environ Microbiol. 72(11):7345-8.
.
2006. Bug juice: harvesting electricity with microorganisms.. Nat Rev Microbiol. 4(7):497-508.
.
2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling.. Appl Environ Microbiol. 72(2):1558-68.
.
2006. .
2006. Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 187(17):5918-26.
.
2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans.. Appl Environ Microbiol. 71(4):2186-9.
.
2005. Extracellular electron transfer via microbial nanowires.. Nature. 435(7045):1098-101.
.
2005. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes.. Appl Environ Microbiol. 70(2):1234-7.
.
2004.
Department of Microbiology