Research Professor
Phone:
413-348-4936
Fax:
413-545-1578
Email:
Office:
400 Morrill Science Center IVN
Ph.D.:
Microbiology, Michigan State University, 1982
Mailing address:
Derek R. Lovley, Ph.D.
Department of Microbiology
418 Morrill Science Center IVN
University of Massachusetts
639 North Pleasant Street
Amherst, MA 01003-9298
Research Interests
Dr. Lovley's research on the physiology and ecology of novel anaerobic microorganisms is currently focused on the role of electroactive microorganisms in biogeochemical cycling, the conversion of wastes to methane, and the corrosion of metals. He is also investigating microbial production of protein nanowires as a sustainable electronic material for applications in renewable electricity generation and biomedical sensing.
Selected Publications
Response to Wang et al.: evidence contradicting the cytochrome-only model.. Trends Microbiol. 31(6):548-549. .
2023.
Microbial nanowires with genetically modified peptide ligands to sustainably fabricate electronic sensing devices.. Biosens Bioelectron. 226:115147. .
2023.
H Is a Major Intermediate in Corrosion of Iron.. mBio. 14(2):e0007623. .
2023.
Engineering Geobacter pili to produce metal:organic filaments.. Biosens Bioelectron. 222:114993. .
2023.
Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments.. Water Res. 219:118553. .
2022.
Microbe Profile: : a model for novel physiologies of biogeochemical and technological significance.. Microbiology (Reading). 168(2) .
2022.
Microbial nanowires.. Curr Biol. 32(3):R110-R112. .
2022.
Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations.. Bioresour Technol. 345:126553. .
2022.
Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms.. Nat Rev Microbiol. 20(1):5-19. .
2022.
Genetic Manipulation of Desulfovibrio ferrophilus and Evaluation of Fe(III) Oxide Reduction Mechanisms.. Microbiol Spectr. 10(6):e0392222. .
2022.
Microbial biofilms for electricity generation from water evaporation and power to wearables.. Nat Commun. 13(1):4369. .
2022.
On the Existence of Pilin-Based Microbial Nanowires.. Front Microbiol. 13:872610. .
2022.
Untangling Geobacter sulfurreducens Nanowires.. mBio. 13(3):e0085022. .
2022.
Extracellular Electron Exchange Capabilities of and .. Environ Sci Technol. 55(23):16195-16203. .
2021.
Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer.. mBio. 12(5):e0234421. .
2021.
Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor.. Microbiol Spectr. 9(2):e0087721. .
2021.
Direct Observation of Electrically Conductive Pili Emanating from .. mBio. 12(4):e0220921. .
2021.
Microbial corrosion of metals: The corrosion microbiome.. Adv Microb Physiol. 78:317-390. .
2021.
Self-sustained green neuromorphic interfaces.. Nat Commun. 12(1):3351. .
2021.
Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species.. ISME J. 15(10):3084-3093. .
2021.
Correlation of Key Physiological Properties of Isolates with Environment of Origin.. Appl Environ Microbiol. 87(13):e0073121. .
2021.
Solvent-Induced Assembly of Microbial Protein Nanowires into Superstructured Bundles.. Biomacromolecules. 22(3):1305-1311. .
2021.
Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions.. Trends Biotechnol. 39(9):940-952. .
2021.
Capable of Direct Interspecies Electron Transfer.. Environ Sci Technol. 54(23):15347-15354. .
2020.
Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.. J Bacteriol. 202(20) .
2020.
Bioinspired bio-voltage memristors.. Nat Commun. 11(1):1861. .
2020.
An Chassis for Production of Electrically Conductive Protein Nanowires.. ACS Synth Biol. 9(3):647-654. .
2020.
Power generation from ambient humidity using protein nanowires.. Nature. 578(7796):550-554. .
2020.
Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option.. ISME J. 14(3):837-846. .
2020.
Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production.. iScience. 23(12):101794. .
2020.
Protein Nanowires.. Front Microbiol. 10:2078. .
2019.
Decorating the Outer Surface of Microbially Produced Protein Nanowires with Peptides.. ACS Synth Biol. 8(8):1809-1817. .
2019.
Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire.. Commun Biol. 2:219. .
2019.
Iron Corrosion via Direct Metal-Microbe Electron Transfer.. mBio. 10(3) .
2019.
A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili.. Environ Microbiol. 21(7):2511-2522. .
2019.
The Archaellum of Methanospirillum hungatei Is Electrically Conductive.. mBio. 10(2) .
2019.
Construction of a Strain With Exceptional Growth on Cathodes.. Front Microbiol. 9:1512. .
2018.
Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation.. Microb Ecol. 76(3):660-667. .
2018.
Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms.. ISME J. 12(1):48-58. .
2018.
Electron and Proton Flux for Carbon Dioxide Reduction in During Direct Interspecies Electron Transfer.. Front Microbiol. 9:3109. .
2018.
Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires.. Small. 14(44):e1802624. .
2018.
The Hydrogen Economy of Methanosarcina barkeri: Life in the Fast Lane.. J Bacteriol. 200(20) .
2018.
Syntrophy Goes Electric: Direct Interspecies Electron Transfer.. Annu Rev Microbiol. 71:643-664. .
2017.
Happy together: microbial communities that hook up to swap electrons.. ISME J. 11(2):327-336. .
2017.
Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens.. FEMS Microbiol Lett. 364(9) .
2017.
Metatranscriptomic Evidence for Direct Interspecies Electron Transfer between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils.. Appl Environ Microbiol. 83(9) .
2017.
Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis.. PLoS One. 12(1):e0170406. .
2017.
Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.. ISME J. 10(2):310-20. .
2016.
How to Sustainably Feed a Microbe: Strategies for Biological Production of Carbon-Based Commodities with Renewable Electricity.. Front Microbiol. 7:1879. .
2016.
Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'.. Nat Nanotechnol. 11(11):913-914. .
2016.
Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens.. J Ind Microbiol Biotechnol. 43(11):1561-1575. .
2016.
The electrically conductive pili of pecies are a recently evolved feature for extracellular electron transfer.. Microb Genom. 2(8):e000072. .
2016.
Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials.. Bioresour Technol. 220:516-522. .
2016.
Synthetic Biological Protein Nanowires with High Conductivity.. Small. 12(33):4481-5. .
2016.
Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures.. Front Microbiol. 7:236. .
2016.
Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.. Bioresour Technol. 191:140-5. .
2015.
Protozoan grazing reduces the current output of microbial fuel cells.. Bioresour Technol. 193:8-14. .
2015.
Simplifying microbial electrosynthesis reactor design.. Front Microbiol. 6:468. .
2015.
Syntrophic growth via quinone-mediated interspecies electron transfer.. Front Microbiol. 6:121. .
2015.
Structural basis for metallic-like conductivity in microbial nanowires.. mBio. 6(2):e00084. .
2015.
Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange.. Environ Microbiol. 17(3):648-55. .
2015.
Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function.. Environ Microbiol. 17(7):2209-15. .
2015.
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer.. ISME J. 9(2):333-46. .
2015.
Link between capacity for current production and syntrophic growth in Geobacter species.. Front Microbiol. 6:744. .
2015.
Centimeter-long electron transport in marine sediments via conductive minerals.. ISME J. 9(2):527-31. .
2015.
Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens.. Front Microbiol. 5:245. .
2014.
Microbial nanowires for bioenergy applications.. Curr Opin Biotechnol. 27:88-95. .
2014.
Promoting interspecies electron transfer with biochar.. Sci Rep. 4:5019. .
2014.
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.. Appl Environ Microbiol. 80(15):4599-605. .
2014.
Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.. Appl Environ Microbiol. 80(14):4331-40. .
2014.
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.. PLoS Comput Biol. 10(4):e1003575. .
2014.
Real-time monitoring of subsurface microbial metabolism with graphite electrodes.. Front Microbiol. 5:621. .
2014.
Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment.. Bioresour Technol. 174:306-10. .
2014.
The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.. Nucleic Acids Res. 42(10):6487-96. .
2014.
Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.. Appl Environ Microbiol. 80(8):2410-6. .
2014.
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.. mBio. 5(5):e01636-14. .
2014.
A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.. Appl Environ Microbiol. 80(3):1219-24. .
2014.
Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy.. Nat Nanotechnol. 9(12):1012-7. .
2014.
Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.. Bioresour Technol. 173:82-86. .
2014.
Proteome of Geobacter sulfurreducens in the presence of U(VI).. Microbiology (Reading). 160(Pt 12):2607-2617. .
2014.
Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments.. Front Microbiol. 5:366. .
2014.
Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.. Microbiology (Reading). 160(Pt 1):123-129. .
2014.
Field evidence of selenium bioreduction in a uranium-contaminated aquifer.. Environ Microbiol Rep. 5(3):444-52. .
2013.
Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation.. ISME J. 7(2):370-83. .
2013.
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells.. Phys Chem Chem Phys. 15(34):14290-4. .
2013.
When is a microbial culture "pure"? Persistent cryptic contaminant escapes detection even with deep genome sequencing. mBio. 4(2):e00591-12. .
2013.
Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface.. PLoS One. 8(3):e57819. .
2013.
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity.. Curr Opin Biotechnol. 24(3):385-90. .
2013.
Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater.. ISME J. 7(7):1286-98. .
2013.
Transcriptomic and genetic analysis of direct interspecies electron transfer.. Appl Environ Microbiol. 79(7):2397-404. .
2013.
Molecular analysis of the in situ growth rates of subsurface Geobacter species.. Appl Environ Microbiol. 79(5):1646-53. .
2013.
Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii.. Microb Cell Fact. 12:118. .
2013.
Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.. Environ Microbiol Rep. 5(6):904-10. .
2013.
A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.. Appl Environ Microbiol. 79(4):1102-9. .
2013.
Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.. Appl Environ Microbiol. 79(3):901-7. .
2013.
Anaerobic benzene oxidation via phenol in Geobacter metallireducens.. Appl Environ Microbiol. 79(24):7800-6. .
2013.
U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.. Appl Environ Microbiol. 79(20):6369-74. .
2013.
Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry.. Curr Opin Biotechnol. 24(3):489-97. .
2013.
Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.. Chemphyschem. 13(2):463-8. .
2012.
Anaerobic benzene oxidation by Geobacter species.. Appl Environ Microbiol. 78(23):8304-10. .
2012.
Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.. Appl Environ Microbiol. 78(21):7645-51. .
2012.
Electrical conductivity in a mixed-species biofilm.. Appl Environ Microbiol. 78(16):5967-71. .
2012.
Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics.. ChemSusChem. 5(6):1039-46. .
2012.
Real-time spatial gene expression analysis within current-producing biofilms.. ChemSusChem. 5(6):1092-8. .
2012.
Electromicrobiology.. Annu Rev Microbiol. .
2012.
Phylogenetic classification of diverse LysR-type transcriptional regulators of a model prokaryote Geobacter sulfurreducens.. J Mol Evol. 74(3-4):187-205. .
2012.
The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features.. BMC Genomics. 13:690. .
2012.
The design of long-term effective uranium bioremediation strategy using a community metabolic model.. Biotechnol Bioeng. 109(10):2475-83. .
2012.
Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens.. J Bacteriol. 194(9):2248-53. .
2012.
Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species.. J Biol Chem. 287(14):10958-66. .
2012.
Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.. Biochem Soc Trans. 40(6):1186-90. .
2012.
Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction.. Appl Environ Microbiol. 78(8):2966-72. .
2012.
Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers.. Appl Environ Microbiol. 77(18):6502-9. .
2011.
Geobacter: the microbe electric's physiology, ecology, and practical applications.. Adv Microb Physiol. 59:1-100. .
2011.
Tunable metallic-like conductivity in microbial nanowire networks.. Nat Nanotechnol. 6(9):573-9. .
2011.
Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus.. Appl Environ Microbiol. 77(17):5926-33. .
2011.
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.. Bioelectrochemistry. 80(2):142-50. .
2011.
Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments.. ISME J. 5(2):305-16. .
2011.
Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies.. Appl Environ Microbiol. 77(13):4597-602. .
2011.
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms.. Appl Environ Microbiol. 77(9):2882-6. .
2011.
A shift in the current: new applications and concepts for microbe-electrode electron exchange.. Curr Opin Biotechnol. 22(3):441-8. .
2011.
Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).. Microb Biotechnol. 4(1):55-63. .
2011.
Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.. Biochim Biophys Acta. 1807(4):404-12. .
2011.
Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.. J Contam Hydrol. 122(1-4):96-103. .
2011.
In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling.. Nat Rev Microbiol. 9(1):39-50. .
2011.
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.. Science. 330(6009):1413-5. .
2010.
Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate.. Appl Environ Microbiol. 76(7):2371-5. .
2010.
Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.. Microb Cell Fact. 9:90. .
2010.
Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor.. Environ Microbiol. 12(4):1011-20. .
2010.
Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes.. BMC Genomics. 11:40. .
2010.
Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.. Environ Sci Technol. 44(23):8897-903. .
2010.
Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species.. Nucleic Acids Res. 38(3):810-21. .
2010.
Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens.. Gene. 469(1-2):31-44. .
2010.
Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation.. Environ Sci Technol. 44(1):47-54. .
2010.
Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments.. J Contam Hydrol. 112(1-4):30-44. .
2010.
Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus.. BMC Evol Biol. 10:230. .
2010.
Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens.. Nucleic Acids Res. 38(21):7485-99. .
2010.
Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA.. FEMS Microbiol Lett. 310(1):62-8. .
2010.
Constraint-based modeling analysis of the metabolism of two Pelobacter species.. BMC Syst Biol. 4:174. .
2010.
Expression of acetate permease-like (apl ) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations.. FEMS Microbiol Ecol. 73(3):441-9. .
2010.
Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens.. Appl Environ Microbiol. 76(12):3999-4007. .
2010.
Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens.. Appl Environ Microbiol. 76(12):4080-4. .
2010.
Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor.. J Ind Microbiol Biotechnol. 36(2):205-9. .
2009.
Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation.. Microb Biotechnol. 2(2):274-86. .
2009.
Future shock from the microbe electric.. Microb Biotechnol. 2(2):139-41. .
2009.
Genome-scale constraint-based modeling of Geobacter metallireducens.. BMC Syst Biol. 3:15. .
2009.
Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments.. ISME J. 3(2):216-30. .
2009.
Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation.. Appl Environ Microbiol. 75(20):6591-9. .
2009.
Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.. Funct Integr Genomics. 9(1):15-25. .
2009.
Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens.. BMC Genomics. 10:331. .
2009.
PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens.. J Mol Microbiol Biotechnol. 16(3-4):146-58. .
2009.
Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.. Biosens Bioelectron. 24(12):3498-503. .
2009.
Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.. Environ Microbiol. 10(10):2505-14. .
2008.
The degree of redundancy in metabolic genes is linked to mode of metabolism.. Biophys J. 94(4):1216-20. .
2008.
Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms.. J Microbiol Methods. 74(1):26-32. .
2008.
Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant.. Bioelectrochemistry. 73(1):70-5. .
2008.
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.. Appl Environ Microbiol. 74(14):4277-84. .
2008.
Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.. Appl Environ Microbiol. 74(1):251-8. .
2008.
Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction.. Environ Sci Technol. 42(8):2999-3004. .
2008.
The microbe electric: conversion of organic matter to electricity.. Curr Opin Biotechnol. 19(6):564-71. .
2008.
Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation.. Int J Syst Evol Microbiol. 58(Pt 5):1075-8. .
2008.
Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments.. Microb Ecol. 55(3):489-99. .
2008.
Extracellular electron transfer: wires, capacitors, iron lungs, and more.. Geobiology. 6(3):225-31. .
2008.
Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function.. BMC Genomics. 9:471. .
2008.
Electricity generation by Geobacter sulfurreducens attached to gold electrodes.. Langmuir. 24(8):4376-9. .
2008.
Highly conserved genes in Geobacter species with expression patterns indicative of acetate limitation.. Microbiology. 154(Pt 9):2589-99. .
2008.
Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation.. Environ Microbiol. 10(5):1218-30. .
2008.
Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens.. PLoS Comput Biol. 4(2):e36. .
2008.
Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.. Appl Environ Microbiol. 74(18):5850-3. .
2008.
Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi.. Appl Environ Microbiol. 74(19):5943-7. .
2008.
Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens.. J Bacteriol. 190(7):2266-74. .
2008.
Geobacter sulfurreducens strain engineered for increased rates of respiration.. Metab Eng. 10(5):267-75. .
2008.
Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens.. Environ Microbiol. 10(2):497-505. .
2008.
Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.. Biochim Biophys Acta. 1784(12):1935-41. .
2008.
Investigation of direct vs. indirect involvement of the c-type cytochrome MacA in Fe(III) reduction by Geobacter sulfurreducens.. FEMS Microbiol Lett. 286(1):39-44. .
2008.
Growth with high planktonic biomass in Shewanella oneidensis fuel cells.. FEMS Microbiol Lett. 278(1):29-35. .
2008.
Steady state protein levels in Geobacter metallireducens grown with iron (III) citrate or nitrate as terminal electron acceptor.. Proteomics. 7(22):4148-57. .
2007.
Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins.. FEMS Microbiol Lett. 277(1):21-7. .
2007.
Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction.. Microbiology. 153(Pt 10):3572-85. .
2007.
Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.. Appl Environ Microbiol. 73(16):5347-53. .
2007.
Genome-wide expression profiling in Geobacter sulfurreducens: identification of Fur and RpoS transcription regulatory sites in a relGsu mutant.. Funct Integr Genomics. 7(3):229-55. .
2007.
Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell.. Int J Syst Evol Microbiol. 57(Pt 4):701-7. .
2007.
Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens.. BMC Microbiol. 7:16. .
2007.
Reclassification of Trichlorobacter thiogenes as Geobacter thiogenes comb. nov.. Int J Syst Evol Microbiol. 57(Pt 3):463-6. .
2007.
Heat-shock sigma factor RpoH from Geobacter sulfurreducens.. Microbiology. 153(Pt 3):838-46. .
2007.
Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses.. Int J Syst Evol Microbiol. 57(Pt 1):126-35. .
2007.
Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments.. ISME J. 1(8):663-77. .
2007.
Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens.. Biosystems. 90(2):421-41. .
2007.
Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation.. J Bacteriol. 189(5):2125-7. .
2007.
Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling.. Appl Environ Microbiol. 72(2):1558-68. .
2006.
Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 188(24):8469-78. .
2006.
Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens.. Environ Microbiol. 8(10):1805-15. .
2006.
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.. Appl Environ Microbiol. 72(11):7345-8. .
2006.
c-Type cytochromes in Pelobacter carbinolicus.. Appl Environ Microbiol. 72(11):6980-5. .
2006.
A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens.. Microbiology. 152(Pt 8):2257-64. .
2006.
The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.. Biochim Biophys Acta. 1764(7):1198-206. .
2006.
Bug juice: harvesting electricity with microorganisms.. Nat Rev Microbiol. 4(7):497-508. .
2006.
Microbial fuel cells: novel microbial physiologies and engineering approaches.. Curr Opin Biotechnol. 17(3):327-32. .
2006.
DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens.. J Bacteriol. 188(8):2792-800. .
2006.
Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials.. Biosens Bioelectron. 21(11):2058-63. .
2006.
Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.. Appl Environ Microbiol. 71(12):8634-41. .
2005.
Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 187(17):5918-26. .
2005.
Remediation and recovery of uranium from contaminated subsurface environments with electrodes.. Environ Sci Technol. 39(22):8943-7. .
2005.
Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes.. Appl Environ Microbiol. 71(11):6870-7. .
2005.
Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site.. Appl Environ Microbiol. 71(10):6308-18. .
2005.
Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates.. Int J Syst Evol Microbiol. 55(Pt 4):1667-74. .
2005.
Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae.. Appl Environ Microbiol. 71(7):3858-65. .
2005.
Extracellular electron transfer via microbial nanowires.. Nature. 435(7045):1098-101. .
2005.
OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens.. J Bacteriol. 187(13):4505-13. .
2005.
Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens.. Microbiology. 151(Pt 6):1761-7. .
2005.
DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens.. Appl Environ Microbiol. 71(5):2530-8. .
2005.
Crystal ball. In silico biology meets in situ phenomenology.. Environ Microbiol. 7(4):478-9. .
2005.
Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans.. Appl Environ Microbiol. 71(4):2186-9. .
2005.
Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI).. Environ Sci Technol. 39(23):9039-48. .
2005.
Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.. Microb Ecol. 48(2):178-90. .
2004.
Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor.. Appl Environ Microbiol. 70(4):2525-8. .
2004.
In situ expression of nifD in Geobacteraceae in subsurface sediments.. Appl Environ Microbiol. 70(12):7251-9. .
2004.
Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes.. Appl Environ Microbiol. 70(2):1234-7. .
2004.
Dissimilatory Fe(III) and Mn(IV) reduction.. Adv Microb Physiol. 49:219-86. .
2004.
Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.. Appl Environ Microbiol. 70(10):6023-30. .
2004.
Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov.. Int J Syst Evol Microbiol. 54(Pt 5):1591-9. .
2004.
Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens.. Appl Environ Microbiol. 70(9):5183-9. .
2004.
The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens.. J Bacteriol. 186(16):5543-6. .
2004.
MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens.. J Bacteriol. 186(12):4042-5. .
2004.
Graphite electrodes as electron donors for anaerobic respiration.. Environ Microbiol. 6(6):596-604. .
2004.
Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater.. Appl Environ Microbiol. 70(5):3091-5. .
2004.
Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens.. J Bacteriol. 186(10):3022-8. .
2004.
Preferential reduction of FeIII over fumarate by Geobacter sulfurreducens.. J Bacteriol. 186(9):2897-9. .
2004.
The structure of the core region of the lipopolysaccharide from Geobacter sulfurreducens.. Carbohydr Res. 339(18):2901-4. .
2004.
Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.. Appl Environ Microbiol. 70(12):7558-60. .
2004.
Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses.. Microb Ecol. 46(2):257-69. .
2003.
Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.. Science. 302(5652):1967-9. .
2003.
OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 185(7):2096-103. .
2003.
Biotechnological application of metal-reducing microorganisms.. Adv Appl Microbiol. 53:85-128. .
2003.
Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer.. Appl Environ Microbiol. 69(10):5884-91. .
2003.
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.. Nat Biotechnol. 21(10):1229-32. .
2003.
Extending the upper temperature limit for life.. Science. 301(5635):934. .
2003.
Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments.. Environ Microbiol. 5(7):583-91. .
2003.
Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).. Int J Syst Evol Microbiol. 53(Pt 3):669-73. .
2003.
Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment.. Appl Environ Microbiol. 69(6):3672-5. .
2003.
Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent.. Appl Environ Microbiol. 69(5):2985-93. .
2003.
Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage.. J Bacteriol. 185(8):2493-502. .
2003.
Electricity production by Geobacter sulfurreducens attached to electrodes.. Appl Environ Microbiol. 69(3):1548-55. .
2003.
Cleaning up with genomics: applying molecular biology to bioremediation.. Nat Rev Microbiol. 1(1):35-44. .
2003.
Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.. Biochem J. 369(Pt 1):153-61. .
2003.
Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.. Environ Microbiol. 4(9):510-6. .
2002.
Fulvic acid oxidation state detection using fluorescence spectroscopy.. Environ Sci Technol. 36(14):3170-5. .
2002.
Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer.. Ground Water. 40(4):353-60. .
2002.
Harnessing microbially generated power on the seafloor.. Nat Biotechnol. 20(8):821-5. .
2002.
Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor.. Int J Syst Evol Microbiol. 52(Pt 3):719-28. .
2002.
Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments.. Microb Ecol. 43(1):134-45. .
2002.
Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments.. Appl Environ Microbiol. 68(5):2300-6. .
2002.
Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.. Appl Environ Microbiol. 68(5):2294-9. .
2002.
Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.. Environ Microbiol. 4(2):115-24. .
2002.
Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis.. Nature. 416(6882):767-9. .
2002.
Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.. Appl Environ Microbiol. 68(4):1735-42. .
2002.
Electrode-reducing microorganisms that harvest energy from marine sediments.. Science. 295(5554):483-5. .
2002.
A hydrogen-based subsurface microbial community dominated by methanogens.. Nature. 415(6869):312-5. .
2002.
Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.. Int J Syst Evol Microbiol. 52(Pt 6):1929-35. .
2002.
Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.. Environ Sci Technol. 36(22):4811-7. .
2002.
Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea.. Appl Environ Microbiol. 67(7):3275-9. .
2001.
Development of a genetic system for Geobacter sulfurreducens.. Appl Environ Microbiol. 67(7):3180-7. .
2001.
Microbial detoxification of metals and radionuclides.. Curr Opin Biotechnol. 12(3):248-53. .
2001.
Application of the 5' fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments.. Appl Environ Microbiol. 67(6):2781-9. .
2001.
Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus.. Environ Microbiol. 3(4):281-7. .
2001.
Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).. Environ Sci Technol. 35(9):1785-90. .
2001.
Comment on "Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry".. Environ Sci Technol. 35(7):1556-9. .
2001.
Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers.. Int J Syst Evol Microbiol. 51(Pt 2):581-8. .
2001.
Trichlorobacter thiogenes should be renamed as a Geobacter species.. Appl Environ Microbiol. 67(2):1020-2. .
2001.
Acetate oxidation coupled to Fe(iii) reduction in hyperthermophilic microorganisms.. Appl Environ Microbiol. 67(3):1363-5. .
2001.
Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens.. Biochem J. 359(Pt 1):147-52. .
2001.
Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria.. FEMS Microbiol Lett. 195(2):253-8. .
2001.
Bioremediation. Anaerobes to the rescue.. Science. 293(5534):1444-6. .
2001.
Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens.. J Bacteriol. 183(15):4468-76. .
2001.
Anaerobic benzene degradation.. Biodegradation. 11(2-3):107-16. .
2000.
Microbes with a mettle for bioremediation.. Nat Biotechnol. 18(6):600-1. .
2000.
Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments.. Microb Ecol. 39(2):153-167. .
2000.
Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens.. Appl Environ Microbiol. 66(5):2248-51. .
2000.
Hexadecane decay by methanogenesis.. Nature. 404(6779):722-3. .
2000.
Characterization of a membrane-bound NADH-dependent Fe(3+) reductase from the dissimilatory Fe(3+)-reducing bacterium Geobacter sulfurreducens.. FEMS Microbiol Lett. 185(2):205-11. .
2000.
Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum.. Appl Environ Microbiol. 66(3):1050-6. .
2000.
N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species.. Environ Microbiol. 2(3):266-73. .
2000.
Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria.. Appl Environ Microbiol. 66(9):3743-9. .
2000.
Novel forms of anaerobic respiration of environmental relevance.. Curr Opin Microbiol. 3(3):252-6. .
2000.
The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III).. J Bacteriol. 181(24):7647-9. .
1999.
Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer.. Int J Syst Bacteriol. 49 Pt 4:1615-22. .
1999.
Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction.. Appl Environ Microbiol. 65(9):4252-4. .
1999.
Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria.. Int J Syst Bacteriol. 49 Pt 3:1177-80. .
1999.
Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer.. Appl Environ Microbiol. 65(7):3056-63. .
1999.
Humics as an electron donor for anaerobic respiration.. Environ Microbiol. 1(1):89-98. .
1999.
Recovery of humic-reducing bacteria from a diversity of environments.. Appl Environ Microbiol. 64(4):1504-9. .
1998.
Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment.. Appl Environ Microbiol. 64(2):775-8. .
1998.
Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism.. Anaerobe. 4(6):277-82. .
1998.
Microbiological evidence for Fe(III) reduction on early Earth.. Nature. 395(6697):65-7. .
1998.
Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science. 281(5379):976-7. .
1998.
Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene.. Appl Environ Microbiol. 64(8):3102-5. .
1998.
Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol. 64(6):2232-6. .
1998.
Rapid Benzene Degradation in Methanogenic Sediments from a Petroleum-Contaminated Aquifer. Appl Environ Microbiol. 64(5):1937-9. .
1998.
Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov.. Arch Microbiol. 168(5):380-8. .
1997.
Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.. Appl Environ Microbiol. 63(9):3589-93. .
1997.
Bioremediation of metal contamination.. Curr Opin Biotechnol. 8(3):285-9. .
1997.
Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium.. Arch Microbiol. 165(6):370-6. .
1996.
Hydrogen-based microbial ecosystems in the Earth.. Science. 272(5263):896b. .
1996.
Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments.. Appl Environ Microbiol. 62(5):1818-21. .
1996.
Isolation of Geobacter species from diverse sedimentary environments.. Appl Environ Microbiol. 62(5):1531-6. .
1996.
Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.. J Bacteriol. 178(8):2402-8. .
1996.
Oxidation of Polycyclic Aromatic Hydrocarbons under Sulfate-Reducing Conditions.. Appl Environ Microbiol. 62(3):1099-101. .
1996.
Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms.. Appl Environ Microbiol. 62(1):288-91. .
1996.
Bioremediation of organic and metal contaminants with dissimilatory metal reduction.. J Ind Microbiol. 14(2):85-93. .
1995.
Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids.. Arch Microbiol. 164(6):406-13. .
1995.
Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors.. Appl Environ Microbiol. 61(10):3556-61. .
1995.
Fe(III) and S0 reduction by Pelobacter carbinolicus.. Appl Environ Microbiol. 61(6):2132-8. .
1995.