Publications
Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals.. Arch Microbiol. 159(4):336-44.
.
1993. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.. Appl Environ Microbiol. 59(11):3572-6.
.
1993. The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III).. J Bacteriol. 181(24):7647-9.
.
1999. Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria.. FEMS Microbiol Lett. 195(2):253-8.
.
2001. .
2001. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.. Biochem J. 369(Pt 1):153-61.
.
2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 185(7):2096-103.
.
2003. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens.. J Bacteriol. 186(12):4042-5.
.
2004. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.. Biochim Biophys Acta. 1764(7):1198-206.
.
2006. Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens.. BMC Microbiol. 7:16.
.
2007. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.. Appl Environ Microbiol. 74(14):4277-84.
.
2008. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.. Science. 330(6009):1413-5.
.
2010. Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.. Biochim Biophys Acta. 1807(4):404-12.
.
2011. .
2011. Real-time spatial gene expression analysis within current-producing biofilms.. ChemSusChem. 5(6):1092-8.
.
2012. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.. Chemphyschem. 13(2):463-8.
.
2012. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.. Environ Microbiol Rep. 5(6):904-10.
.
2013. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange.. Environ Microbiol. 17(3):648-55.
.
2015. .
2016.
Department of Microbiology